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Abstract
We present a theoretical study of magnetoresistance for granular metals deep
in the hopping regime, in the limit of large metal/insulator volume ratio,
within the framework of coherent electron backscattering. We adopt the one-
electron approximation, and examine effects of a magnetic field and spin–orbit
interaction on the backscattering, both in the semi-classical approximation. We
derive an expression for magnetoresistance characteristic of zero-dimensional
systems, i.e. dots. The result is compared with previous experiments.

1. Introduction

Coherent electron backscattering in disordered systems has many interesting consequences,
among which is the magnetoresistance (MR) for systems in the weak-localization regime [1].
The origin of this MR is attributed to the destruction of backscattering, caused by magnetic-
field-induced phase difference between quantum amplitudes of conjugate returning paths
(clockwise and counterclockwise). When spin–orbit scattering is negligible, the backscattering
enhances the resistance, and its destruction by a magnetic field results in negative MR, whereas
in the presence of strong spin–orbit scattering, the backscattering reduces the resistance, and
the corresponding MR is positive. On the other hand, for systems in the variable-range-hopping
(VRH) regime, recent theoretical works [2] have shown that MR can arise from a different
mechanism, namely, the quantum interference between various ‘forwarding’ paths. Since
the effect depends on amount of magnetic flux encircled by paths, for two-dimensional (2D)
systems, ‘forwarding-MR’ (FMR) theories predict anisotropic MR behaviour with respect
to field direction. Experimental works in the past on strongly localized systems [3–6] were
largely explained by these theories.
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Our motivation for the present study is to address the following questions. (1) For
disordered systems such as doped semiconductors, a hopping path is primarily contained in
the insulator, with the effect of a magnetic field on hopping path well described by FMR
theories. In contrast, for some granular metals, the metal/insulator volume ratio can be very
large. Does the magnetic influence on electron waves inside metal grains play any role? Is
any phenomenon reminiscent of the ‘backscattering MR’ (BMR) observable? (2) There are
experiments [7] showing isotropic MR for 2D granular metal films, which appear inconsistent
with the anisotropy prediction of the FMR theory, and, hence, may belong to a category for
which a different calculation is needed. In this work, we hope to examine carefully the role
of backscattering and its relation with observed MR at low temperatures, for granular metals
deep in the hopping regime, in the limit of large metal/insulator volume ratio.

Several important theoretical works are also relevant to the problem we are studying
here. Raikh and Glazman considered the effect of a magnetic field on tunnelling between two
smooth potential wells, and obtained a large MR [8]. Wang and Xie discussed the MR due to
field-induced level crossing for a system of identical discs [9]. Eto developed an MR theory
within a disordered interacting Anderson model [10]. In the calculation to be presented below,
we assume (1) following [11], that metal grains are crystalline but with rough surfaces, (2) that
neighbouring grains are not necessarily identical and (3) that the one-electron approximation
is valid. The last assumption is made in view of the fact that it was employed for BMR
calculations before [1].

In section 2, we present our theoretical model. In section 3, we compare the model with
experiments. In section 4, we conclude the study.

2. Theoretical model

For a granular system in the strongly localized regime, the charge transport is determined
by the so-called critical network of resistances, with each resistance corresponding mainly
to a single coherent hopping path between two grains, labelled as 1 andN. Typically, N, the
number of grains covered by the coherent hopping, is of the order of a few, for the temperature
range 1–300 K. The smallness ofN is due to the range of the parameters specific to the
granular system, e.g., charging energy, intergrain spacing and wave function decay constant.
This is in contrast to the case of doped semiconductors, where long-range hoppings occur at
low temperatures. Although, in principle, there exists more than one hopping path between
a given pair of grains, they are widely different in resistance, because the resistance, being
proportional to

exp

(
2α

N−1∑
i=1

S�i,i+1

)
,

varies drastically from path to path, whereα is the wave function decay constant in the
insulator, andS�i,i+1 the intergrain spacing between two neighbouring grains contained in the
path�. To the approximation that we consider only the dominant path which gives the lowest
resistance between grains 1 andN, the situation is as if we have a quasi-one-dimensional
system, a string of grains with grains 1 andN at the ends. This is in contrast to the case of
the impurity-doped semiconductors, where, between a given pair of sites (distant from each
other), there are many other impurities between them, and zigzag forwarding paths via the
intermediate sites with path length close to that of the shortest path (i.e. the direct path between
the pair) can exist. Interference among such paths, including the shortest one, is important,
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because they all make contributions of similar magnitude to the total hopping amplitude for
the pair. This interference varies with magnetic field and gives rise to FMR. In our case, we
have only one dominant string of grains. However, a possible source of MR can come from
interference between conjugate returning paths constrained to this string. Note that, in this
model, since the paths can only enclose the flux going through the grains of the string, it is
obviously the same amount of magnetic flux that the string sees regardless of how the magnetic
field is oriented, with the exception of disk-shape grains, of course. This explains why MR in
this case can show isotropy. However, as we move away from the strong localization regime
towards the metal–insulator transition, there can eventually appear more than one hopping
path dominating the transport between two grains. The increase in the number of dominant
paths will continue, and, when the metallic regime is finally reached, there are infinitely many
equally important conducting paths between two points. So, closed loops composed of two
different dominant paths can exist in the ‘intermediate localization’ regime, and rings of grains
for such loops must be considered for an MR calculation. In this regime, the conjugate paths
constrained to a ring can enclose the flux going through the area bounded by the ring, and the
backscattering MR tends to show anisotropy. Continuing this trend finally brings us back to
the ordinary backscattering MR in the weakly localized limit. Our calculation will be limited
to the systems deep in the strongly localized regime.

Firstly, we discuss tunnelling between two neighbouring grains, say, 1 (in state|1〉) and 2
(in state |2〉). Let t be the tunnelling coupling. The hopping conductance between
the grains is proportional to|〈1|t|2〉|2, which, in coordinate representation, becomes
	X,Y 〈1|t|X〉〈X|2〉〈2|Y 〉〈Y |t|1〉. We make certain simplifications for this expression. Follow-
ing Averin and Nazarov [12], we assume that the tunnelling matrix element is non-vanishing
only if X andY are close to the metal surface. Moreover, with short wavelength of atomic size
and frequent random surface scattering, both|1〉 and|2〉 have phases which vary rapidly and
chaotically with the position. So, the foregoing double sum reduces, within atomic resolution,
to the single sum|〈1|t|2〉|2 ∼ 	X|〈1|t|X〉|2|〈X|2〉|2 = M|〈1|t|X2〉〈X2|2〉|2, whereX2 is a
representative surface atom on grain 2, with sizable tunnelling coupling to grain 1, andM is
the effective number of such atoms. This summation of the squared terms means the neglect of
possible interference among tunnelling paths ending at differentX. Therefore, we shall regard
the paths as if they are parallel, independent conducting channels and treat the interference
effect, e.g., MR, for each channel separately. The overall MR can be obtained afterwards by
a straightforward application of electric circuit theory. We stress that this independent chan-
nel approximation holds only with frequent surface scattering and short electron wavelength
(compared with grain size).

Next, we regard a granular system as a conductor network and focus on one element
corresponding to a coherent hopping coveringN grains. The effective matrix element for a
single conducting channel of the hopping is

T1N =
∑

2,...N−1

t12t23 · · · tN−2,N−1〈N − 1|t|X〉〈X|N〉/(�εN,2�εN,3 · · ·�εN,N−1) (1)

where the surface pointX on grain N is written explicitly. |1〉 is a state on grain 1,
coupled to the (initial) ground state|1g〉 by electron–boson (plasmon or phonon) interaction.
�εN,i = εN − εi + I/2τin is the energy difference between the final state|N〉 (on grainN) and
an intermediate state|i〉 (on graini), with τin the dephasing time. We takeεN to be higher than
ε1g, and assume that, prior to the hopping, the difference� = εN − ε1g is compensated by
boson absorption in grain 1. Other cases can be similarly treated. We denote the conductance
associated withT1N asg.
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Backscattering for VRH systems is usually neglected as it is generally believed to be
very small. However, let us examine it in detail for granular systems. We add a term
to T1N, with now T total

1N ∼ T1N + T back
1N , whereT back

1N corresponds to the hopping sequence
1 → 2 → · · · → N → (N−1)→ · · · → 1 → 2 → · · · → N . The leading-order correction,
dgback, to g derives from the cross termT1N

(
T back

1N

)∗
+c.c. in

∣∣T total
1N

∣∣2. We now include
electron–boson couplingHb (in grain 1) explicitly and draw the following diagram for the
cross term.

- - - - - - - - -o- - - - - - -x- - - - - - -x- - - - - -x- - - - - - -x- - - - - - -o- - - - - - -〉
1g,� 1 N 1′ N1 1′′ 1g,� (2)

where ‘o’ is electron–boson interaction vertex and ‘x’ the tunnelling coupling between grains
1 andN similar to that defined in equation (1). The incoming state is an electron in|1g〉 and a
boson of energy�. Let	 be the self-energy of the diagram, then [−2

∫
d�D(�)Im	] gives

transition rate of the process corresponding toT1N
(
T back

1N

)∗
+c.c., whereD(�) is the boson

density of states times the Bose–Einstein distribution. The diagram is summed with respect
to N1,1′ and 1′′, with states|1〉 and|N〉 fixed. N1, 1′ and 1′′ denote intermediates states on
grainsN and 1. With the chaotic property of electron states, the diagram is finite only for
|1〉 = |1′〉 = |1′′〉, because otherwise it would be random in phase and become zero upon
averaging with respect to grain surface configuration. So,

	 = |〈1g,�|Hb|1〉|2
(ε0 − ε1)2

{
1

(ε0 − ε1 − i/2τin)

∑
N1

|T1,N |2
(ε0 − εN + i/2τin)

|T1,N1|2
(ε0 − εN1 − i/2τin)

}
(3)

whereε0 ≡ ε1g + �, and the expression in{ } describes tunnelling between grains 1 andN.
With ε0 = εN − i/2τin (since the main contribution to the integral

∫
d�D(�)Im	 comes from

this pole), we find the expression contains the factor[∑
N1

〈N |X〉〈X|N1〉〈N1|X〉〈X|N〉/(εN − εN1 − i/τin)

]
,

or alternatively,∫
dw

1

(w − i/τin)

{∑
N1

〈N |δ(�r −X)|N1〉〈N1|δ(�r −X)|N〉δ(εN − εN1 −w)
}
. (4)

With the electron wavelength much smaller than the grain size, it is possible to adopt a certain
semi-classical approximation treating electrons as classical particles. For metal grains, quasi-
classical methods indeed were applied to reduce quantum expressions, such as that in{ } of
equation (4), to classical description of electron motion [11, 12]. Without going into details,
we simply state that this expression is basically the Fourier transform,p(w), of the classical
time-dependent backscattering probabilityP(t) ≡ 〈δ[�r(0)− X] δ[�r(t)− X]〉, in grainN. We
obtain

dgback ∝
∫

dtP (t) exp(−t/τin). (5)

For grains,P(t) ∼ constant fort > τ, τ being the surface scattering time, and we have
dgback ∝ ∫

dt exp(−t/τin) ∝ τin.
Computing

∫
d�D(�)Im	 gives

dgback

g
∼ −Im

[ |T1N |2
εN − ε1 − I/τin

]
τin ∼ −(g/τin)τin (6)
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with g in units of 2e2/h. We note again that the single-channel conductanceg is different
from the network conductance. For low-resistance systems which contain as many as,
say, M, parallel channels, between grains 1 andN, with conductancesg1 ∼ g2 ∼ · · · ∼
gM ∼ g, the circuit conductance between the grains isG ∼ Mg, and simple circuit
theory gives dGback/G ∼ dgback/g ∼ −(G/τin)τin/M. On the other hand, for high-
resistance systems to which percolation theory applies, a linkG between critical subnetworks
consists ofM serial conductances among which one element, say,g1, dominates [13]. With
G ∼ g1 � g2, g3, . . . , gM, circuit theory gives dGback/G ∼ −(G/τin)τinM. In summary,
generally we have dGback/G ∼ −(1/M)(G/τin)τin, with M a network-dependent circuit factor
which can vary over a wide range of magnitudes. Later, when the theory is compared with
experiments,M will be used as an adjustable parameter, and it will be seen that the parameter
varies systematically from that characteristic of parallel circuits to that of serial circuits as the
system resistance increases.

Now, we treat the effect of magnetic fields. Because we limit ourselves to the regime
of large metal/insulator volume ratio, we neglect the magnetic influence on electron waves
in the insulator [8]. We focus on the effect inside grains, and, with equation (5) established,
we follow [1] and calculate quasi-classically the variation in dgback due to field-induced
backscattering destruction. The destruction is induced by the phase difference between a
pair of conjugated returning paths,(2ie/h̄)

∮
A dr, whereA is the vector potential for the

magnetic field and the line integration is carried out along a closed trajectoryX → X, traversed
during a time length oft. Averaging the phase difference over all the trajectories, we obtain
〈exp[(2ie/h̄)

∮
A dr]〉 ∼ exp(−t/tH ). For a spherical grain, we obtain the following magnetic

dephasing rate:

1/tH = e2vf R
3
g

8h̄2 H 2 (7)

with vf the Fermi velocity andRg the grain radius. This result is independent of the field
orientation except when it is extended to the case of disklike grains.

We now include the effect of spin–orbit (s.o.) scattering and calculate MR. We shall
again adopt the semi-classical approximation. In contrast to the early works which were
based onk-space formulation [14, 15], however, we consider electron motion in coordinate
space, which is more compatible with the confining geometry of grains. We associate a
quantum amplitudeQ with the classical trajectory inside a grain,(x1 = X)→ (x2)→ · · · →
(xn−1)→ (xn = X), with Q written as a product of amplitudes,Q = 〈x1 → x2〉〈x2, k1, s1 →
x2, k2, s2〉 · · · 〈xn−1 → xn〉〈xn, kn−1, sn−1 → xn, kn, sn〉, wherex ′

i are surface coordinates at
which surface scattering occurs,k′

i momenta ands′i spins.〈xi → xi+1〉 describes (free particle)
orbital motion between scatterings, and〈xi+1, ki, si → xi+1, ki+1, si+1〉 corresponds to the
scattering atxi+1, causing both momentum and spin to change. We take the s.o. coupling to be
V (ki, ki+1)[ic(ki × ki+1) ·σ ] [15],whereV (ki, ki+1) is the surface scattering matrix element for
spinless electrons,c a real number andσ the Pauli spin matrix. With s.o. scattering occurring
only near the grain surface while the primary magnetic effect affects phases of orbital motion
amplitudes〈xi → xi+1〉, we can separate magnetic and s.o. scattering effects. The prescription
for treating the magnetic effect on orbital motion is the same as that we discussed earlier.
To treat the s.o. scattering effect, we now focus on surface scattering〈ki, si → ki+1, si+1〉
(abbreviation of notations shall be adopted from here on unless possible confusion arises). We
write, for the total surface (potential and s.o.) scattering amplitude,

〈kisi → ki+1si+1〉 = V (ki, ki+1)[δ(si, si+1) + ic(ki × ki+1) · σ(si, si+1)]

≡ V (ki, ki+1)Vs(ki, ki+1, si, si+1).
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Next, we consider the backscattering probabilityP(t) for an electron having an initial spin,say,
s1 = u (u = up, d = down) and returning to the starting pointX with spins after a timet. We
writeP(t) = ∑

s |〈X, s, t|X,u〉1 +〈X, s, t|X,u〉2|2, where the subscripts ‘1’ and ‘2’ represent
a pair of conjugated paths. ExpandingP(t), we obtain the sum of cross termsA+A∗, which is
backscattering interference, withA ≡ (〈u, t|u〉2)

∗〈u, t|u〉1 + (〈d, t|u〉2)
∗〈d, t|u〉1 ≡ A1 +A2.

ForA1, we can write (with orbital motion amplitudes dropped)

A1 ∝
∑

s1=s ′1=u,s2,s ′2,...,sn−1,s
′
n−1,sn=s ′n=u

1j |V (kj−1, kj )|2Vs(kj−1, kj , sj−1, sj )Vs(kj−1, kj , s
′
j−1, s

′
j ).

It is easy to verify that, assuming the vector product(kj−1 ×kj ) to be random due to scattering
and taking the average over this random distribution, only the diagonal term in the spin sum
with intermediate spinss2 = s′2 = · · · = sn−1 = s′n−1 = u survives in the last equation. The
average of the quadraticVs factor inA1 gives

〈Vs(kj−1, kj , sj−1 = u, sj = u)Vs(kj−1, kj , s
′
j−1 = u, s′j = u)〉 ∝ 1 − 4τ/3τso

where 1/τ , now, is the total surface scattering rate, and 1/τ so the s.o. scattering rate.
Therefore,〈A1〉 ∝ (1 − 4τ/3τso)n−1 ∼ exp(−4t/3τso), where (n−1)τ has been set equal
to t. Similarly, for A2, one can derive that〈A2〉 ∝ [exp(−4t/3τso) − 1]/2. So, overall,
〈A〉 ∝ [3 exp(−4t/3τso) − 1]/2. Adding up the s.o. and magnetic dephasing effects, we
obtain the following MR:

MR ∼ (1/M)(G/τin)
{

3
2[τ ∗

ϕ (H)− τ ∗
ϕ (H = 0)] − 1

2[τϕ(H)− τϕ(H = 0)]
}

(8)

where 1/τϕ(H) ≡ 1/τin + 1/tH ,1/τ ∗
ϕ (H) ≡ 1/τin + 4/3τso + 1/tH and the circuit factorM

has been explicitly included.
We note that equation (8) contains three parameters, the circuit factorM, and the scattering

timesτ so andτ in. BecauseM is an multiplicative factor, it only affects the amplitude of an
MR curve. On the other hand, the shape of the curve is determined by the scattering times.

According to equation (8), when 2/3 < τso/τin < 4/3(
√

3 − 1), there
is a positive MR at small H, reaching maximum atHm with corresponding
magnetic dephasing 1/tHm = 4/[3(

√
3 − 1)τso] − 1/τin, and zero at H0 with

1/tH0 = [(
√

3 − 1)/2][(
√

3 + 1)τso/τin + 4/3]/[(τso/τin − 2/3)tHm]. These relations,
together with equation (7), permit us to determineτso and τin from experimental values
Hm, H0 andRg, without any parameter adjustment.

3. Comparison with experiments

The MR predicted by the above theory has several important features. (A) In the presence of
s.o. interaction, it shows sign variation with magnetic field, starting with positive values in
small fields and turning to negative values for large fields, which is similar to the typical MR
in weakly localized systems. (B) It is expected to be smaller than the typical MR of weakly
localized systems. (C) It decreases with the resistance of the system. (B) and (C) follow
from the fact that the backhopping probability of an electron decreases exponentially with the
insulator layer thickness traversed in the hopping path. (D) It shows isotropic behaviour with
respect to the orientation of the magnetic field. There are MR measurements performed on
granular systems which show the aforementioned features and, hence, are regarded by us as
cases where we may test the theory. Comparison between the theory and such experiments is
presented below.

In figure 1, we compare our theory with experiments by Kobayashi’s group for granular
copper films of various resistances, withR = 7.57, 19.0, 42.6, 1130 and 1860 k� atT = 4.22 K,
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Figure 1. On the left are the experimental MR data for granular Cu films at 4.22 K, reproduced
from [7]. On the right is the theoretical result of equation (8). Grain diameter= 40 A. For
resistance of films,R = 7.57 (closed circles), 19.0 (open circles), 42.6 (closed squares), 1130
(open squares), and 1860 k� (closed triangles). The MR decreases in amplitude with increasing
film resistance, and turns almost completely negative for theR = 1860 k� film.

all with the same grain diameter= 40Å [7]. They indicated that the structure of Cu particles in
their samples was crystalline and essentially spherical, surrounded by oxide, with resistances
controlled by degree of oxidation. Fairly isotropic MR was observed. With material parameters
for copper, equation (7) gives 1/tH = 3.6× 109H2 s−1, whereH is in units of tesla. We takeHm

∼ 2 T andH0 ∼ 4 T from experiments, and obtainτ so ∼ 5.3×10−11 s andτ in ∼ 5.1×10−11 s,
for the four low-R films. In contrast, earlier experiments of Gershenzonet al for Cu films
in the weak-localization regime, with film thickness 42 A, gaveτ in ∼ 1.6 × 10−11 and
τ so ∼ 0.84× 10−11 [16]. The difference between ourτ so and theirs is consistent with the
phenomenon of large suppression of s.o. scattering by quantum size effects (QSEs), which
was theoretically explained by Kawabata [17] and experimentally verified [18]. For the 1860
k� film, we takeτ in to remain unchanged, and obtainτ sowhich increases up to 8.3× 10−11s,
reasonable if we assume that QSEs increase with increasing oxidation.

The amplitude of MR is fitted with adjustment of circuit factors, which areM = 43.4
(for 7.57 k�), 27 (for 19.0 k�), 20 (for 42.6 k�), 2.2 (for 1130 k�) and 0.77 (for 1860 k�).
As we see, this factor decreases systematically, consistent with the picture that the conductor
network structure varies continuously from that of a parallel circuit to that of a serial circuit
with increasing degree of oxidation. Since the network structure obviously depends on the
growth mechanism, magnitudes ofM are not to be stressed. In fact, it has been observed that
MR amplitude can change by an order of magnitude when growth conditions changes [7].

In figure 2, we compare our theory with experiments by Valles’ group for granular Ag
films of various resistances, 20, 40, and 140 k�, atT = 3 K [6]. We takeRg ∼ 25Å [19], and
obtainτ so ∼ 3.9× 10−11 s, for the 20 and 40 k� films, a largerτ so ∼ 4.08× 10−11 s for the
140 k� film andτ in ∼ 4.9 × 10−11 s for all three cases. In contrast,τ in = 6.7× 10−11 and
τ so= 0.94× 10−11 s were obtained by Gershenzonet al for Ag films in the weak-localization
regime [16], with film thickness 42̊A. The circuit factors areM = 13.5 (for 20 k�), 4.8
(for 40 k�), and 1.1 (for 140 k�), again showing the same systematic trend as that in the
Cu case.
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Figure 2. On the left are the experimental MR data for granular Ag films at 3 K, reproduced from
[6]. On the right is the theoretical result of equation (8). Grain diameter = 50A. For resistance
of films, R = 20 (open circles), 40 (open triangles), 140 k� (open squares). The MC amplitude
decreases with increasing film resistance. G00 ≡ e2/πh.

In both the above cases, although it appears that two of our parameters, τ in and τ so,
obtained from the fitting, fall in the range of measured values of Gershenzon et al and the
third one, M, obeys a systematic variation, we do not naively take this to mean that our theory
is ‘ the theory’ for the experiments considered above. Instead, we should be cautious and
take the agreement to mean that our theory only offers plausible explanation, in light of the
following. (A) There are uncertainties in the magnitude of MR, both in the experiments and
in the theory. Recall that the theory contains a multiplicative factor M, and the experimental
MR value depends on the growth conditions of systems. The uncertainties make it difficult at
the present stage to perform a rigorous comparison in magnitudes. (B) The fitting of theory
to experiments contains three free parameters, τ in and τ so and M, which may be too many.
(C) Other MR mechanisms, e.g., those considered in [2] and [8]–[10], could also be present but
are not taken into account in our comparison. Because of (A)–(C), we must be conservative
about the validity of the comparison. It will take further theoretical and experimental studies
to close these loopholes.

4. Conclusion

In conclusion, we have presented a BMR calculation for granular systems in the hopping
regime. We note that FMR theories and the present BMR calculation apply to different
regimes. With a large metal/insulator volume ratio, MR phenomena, reminiscent of that
in the weak-localization regime and studied in this work, can prevail. As the volume ratio
approaches zero, we have Rg → 0, implying tH → ∞ and G → 0. Then, the BMR described
by equation (8) becomes negligible. In this limit, the charging energy is large and favours
long-range hopping. The energy level spacing in each grain also becomes large with the one
nearest to the Fermi level dominant in a hopping process. The situation is then back to that
of the impurity-doped semiconductors and FMR dominates. We hope that this work calls
attention to the importance of backscattering in granular systems with large metal/insulator
volume ratios, previously neglected by most groups.
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Moreover, we remark that the study of metal particles, as a random system, has a long
history. Important foundations were laid down by R Kubo [20] and by L P Gorkov and
G M Elliashberg [21]. This is still an on-going field, with a view to the understanding of
random zero-dimensional many-electron systems. Our study derives a formula which permits
experimentalists to extract important quantities such as various scattering times from MR
measurement, for these systems. We think that these quantities, if measured systematically,
will aid future studies of metal particles in a significant way.

Acknowledgments

We should like to thank Professors J-J Lin, S Kobayashi, S-Y Hsu, C-D Hu, L-J Sham, and
C-S Ting, for valuable and critical discussions. Special thanks to Professors J-J Lin,
S. Kobayashi and S-Y Hsu for making their data available to us. We should also like to
acknowledge the support of the National Science Council of ROC under contract No NSC88-
2112-M-007-018.

References

[1] Altshuler B L, Khmel‘nitzkii D, Larkin A I and Lee P A 1980 Phys. Rev. B 22 5142
Altshuler B L, Aronov A G, Khmel‘nitzkii D and Larkin A I 1982 Quantum Theory of Solids ed I M Lifshits

(Moscow: MIR) p 130 and references therein
Bergmann G 1984 Phys. Rep. 1 107

[2] Nguyen V L, Spivak B Z and Shklovskii B I 1985 Sov. Phys.–JETP 62 1021
Sivan U, Entin-Wohlman O and Imry Y 1988 Phys. Rev. Lett. 60 1566
Meir Y, Wingreen N S, Entin-Wohlman O and Altshuler B I 1991 Phys. Rev. Lett. 66 1517

[3] Faran O and Ovadyahu Z 1988 Phys. Rev. B 38 5457
Shapir Y and Ovadyahu Z 1989 Phys. Rev. B 40 12441

[4] Laiko E I, Orlov A O, Savchenko A K, II‘ ichev E A and Poltoratskii E A 1987 Sov. Phys. JETP 66 1258
Zhang Y, Dai P and Sarachik M P 1992 Phys. Rev. B 45 9473

[5] Hsu S-Y and Valles J M Jr 1995 Phys. Rev. Lett. 74 2331
[6] Hsu S-Y and Valles J M Jr 1995 Proc. 6th Int. Conf. on Hopping and Related Phenomena (Israel)
[7] Lin J-J, Yamada R and Kobayashi S 1994 J. Phys. Soc. Japan 63 4514

Kobayashi S unpublished 1994
[8] Raikh M E and Glazman L I 1995 Phys. Rev. Lett. 75 128
[9] Wang X R and Xie X C 1997 Europhys. Lett. 38 55

[10] Eto M 1993 Phys. Rev. B 48 4933
Eto M 1995 Phys. Rev. B 51 135066

[11] Gor‘kov L P and Elliashberg G M 1965 Sov. Phys.–JETP 21 940
[12] Averin D V and Nazarov Yu V 1992 Single Charge Tunnelling ed by H Grabert and M H Devoret (New York:

Plenum) p 217
[13] Shklovskii B I and Efros A L 1984 in Electronic Properties of Semiconductors (Heidelberg: Springer) p 94
[14] Hikami S, Larkin A I and Nagaoka Y 1980 Prog. Theor. Phys. 63 707
[15] Bergmann G 1982 Solid State Commun. 42 815
[16] Gershenzon M E, Gubankov B N and Zhuravlev Yu E 1982 Sov. Phys.–JETP 56 1362
[17] Kawabata A 1970 J. Phys. Soc. Japan. 29 902
[18] Meservey R and Tedrow P M 1978 Phys. Rev. Lett. 41 805
[19] Hsu S-Y private communication 2000
[20] Kubo R 1962 J. Phys. Soc. Japan 17 975
[21] Gorkov L P and Elliashberg G M 1965 Sov. Phys.–JETP 21 940


